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Cylindrically symmetric distributions of matter and magnetic 
energy in equilibrium in general relativity 

S. BANERJI 
Department of Physics, University of Burdwan, India 
MS. received 9th February 1968, in revised form 9th April 1968 

Abstract. Solutions of the Einstein-Maxwell equations corresponding to cylindrically 
symmetric distributions of stressless conducting matter with an axial magnetic field 
have been found, which can be matched with an outside pure magnetic field solution 
originally due to  Bonnor. I t  is also shown that Melvin's magnetic universe cannot be 
fitted with dust distributions in this way. 

1. Introduction 
Stationary solutions of Einstein's field equations (without the cosmological term) are 

already known in which the effect of gravitation is balanced by that of the rotation of matter 
(Einstein 1939, Raychaudhuri and Som 1962, Maitra 1966). Recently Som and 
Raychaudhuri (1968) have found a cylindrically symmetric solution for charged dust with 
rotation, where, however, the Lorentz force vanishes so that equilibrium is again due to 
the balancing of the gravitational effect of matter and electromagnetic field energy by the 
centrifugal action of rotation. -4gain Ozsvath (1967) has investigated homogeneous 
distributions of perfectly conducting matter and, although in his solutions the Lorentz 
force does not always vanish, still it turns out that there is always a non-vanishing vorticity. 
The  question that we propose to investigate here is whether an equilibrium can be obtained 
even in the absence of rotation by the effect of electromagnetic interaction in uncharged 
matter. 

In  the following section we shall consider two classes of such solutions: 
(i) Where the matter density p bears a linear relation to the magnetic field energy, viz. 

87ip = bH2, where b is a positive constant. This class of solutions reduces to the known 
vacuum solution of Melvin (1964) when b = 0. 

(ii) A second class of solutions which reduces in the limit p +- 0 to the more generalized 
solution of Bonnor (1954), Raychaudhuri (1960), Ghosh and Sengupta (1965). 

In  5 3 we shall find a solution which can be matched smoothly to the vacuum solution of 
Bonnor (1954). It will be further shown that Melvin's vacuum solution cannot be matched 
to that of a dust in this way. 

2. Static solutions inside conducting dust 
We consider the general static cylindrically symmetric line element 

ds2 = g11 dr2 +gZ2 dz2 +g33 d42 +g44 dt2 

where Y and x are the radial and axial coordinates, respectively, and 4 is the angular co- 
ordinate. We number y ,  x, 4, t as l ,  2, 3 and 4, respectively. The  g,, are functions of 
p.  alone. 

We assume that the matter is at rest in the coordinate system of (1) so that the velocity 
EU = 82/dg44. We further assume the existence of an axial magnetic field along the x 
direction and take the matter to be uncharged and perfectly conducting, so that the electric 
field vanishes. Hence, the only non-vanishing component of the electromagnetic field 
tensor is F3I.  It is evident that, in this case, I?: + R: = 0. We can therefore reduce the 
line element to the Weyl canonical form (Synge 1960, pp. 310-2) 

ds2 = e2U dt2 - $8 -2"(dy2 + dx2) - y2 e-2a d42. (2) 
520 
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The  Einstein-Maxwell equations are 

RU-IRaU v 2 v  = -&TU (3) 

(4) 
1 

4rr 
TC = P V ~ O ,  +- (tF,,F"*St - F"Fv,) 

F'yv = 4nJ' 

FbV# a1 = 0. 
The  magnetic field vector is defined by 

where ~ ~ f i ~ f i  is the Levi-Civita tensor density. 
For the line element (2) we have the following three independent equations: 

e2a-2*(/311 + x12) = H2 (9) 

(10) e2a - 28 jE12 +pll - 2 E l l  - 5) = - 877-p -H2 
r 

where H2 = - HaHa and subscript 1 indicates differentiation with respect to Y. 

is given by 
The  only non-vanishing component of the conduction current is in the 4 direction and 

We note, however, that the equation system (8)-(10) is undetermined as there are only 
three equations connecting four unknown variables (CI, p, p, H2).  We can, therefore, 
adjoin a further relation between them. We shall first consider the case 

8xp = bH2 (12) 
where b is a constant not less than 0. 

From equations (8) and (9) we obtain 

(13) 
P1 p 11 - - = -2C112. 
Y 

From equations (9) and (10) we have 

This  can be reduced to the form 

where 
b+2 
4 

b' = ___ 

Equation (15) on integration yields either 

x-b'p = 1 
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or 
Y 

u-b’P = cln-  
YO 

where c, 2 and ro are constants of integration. 
From (17) we obtain 

1 
a = Z + ~ l n ~ ( b ‘ ~ ~ ~ + u )  

2b 
1 

2bI2 
,8 = - In c (b’2r2 + a) .  (20) 

I can be reduced to zero by a suitable choice of coordinates. Further, we:must take ca = 1 
as otherwise there would be a singularity on the axis. This is because the circumference 
of the circle of radius Y tends to 2 n ~ ( c a ) - ~ ’ ~ ~ ‘  and the proper radius tends to r(ca)(1-b’)’2b’2 
as Y --f 0. Hence, the solution is 

1 

1 bt2? P = -1n ( I+-) ,  
2bt2 a 

This solution is singularity free and reduces to Melvin’s (1964) solution for b = 0 (i.e. 
6’ = $1 

(23 ) 

, 8 = 2 1 n  l + - r  “,“I 
where k = l / z / a  = F312/g. 

The density, magnetic field and conduction current density are given by 
b e2cC - 28 b‘2y2 (b’-Zb’2-l)/b’2 

87p = a ( l  + b’2r2/a)2 = ! ( l+-J  a (25 ) 

This is positive only when a > 0. 
e2a- 28 

8 X P  H2 = __ = 
6 a ( l  +bt2r2/a)2 

2nbb’ e3a-z8 
J 3 =  _ _ _  

a3I2 (1 + b’2r2/a)2 

The integration of equation (18) leads 
separately. 

2.1. Case 1. 1-4cb’ > 0 

where 

to three different cases which we consider 

d = & (1 - 4 ~ b ’ ) ’ : ~  
1 c  
b’ b 

p = -  a - I In  r +  In B 
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where B is a constant of integration. 
Further, 

d-1 8vp = - 
br2(d- 1) 
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For b = 0 the solutions reduce to 

a(d+ 1) 
6: = In ++- [ d - 1  

where h = l + d  
/3 = 26:+A(X-2) l n r +  In??. (33) 

The  pure magnetic field solution (32), (33) was given in this form by Ghosh and Sengupta 
(1965). The  solutions obtained earlier by Bonnor (1954) and Raychaudhuri (1960) can be 
reduced to this form by suitable transformations. The solutions have a singularity on the 
x axis. When h = 0 the solutions (32) and (33) reduce to the form (23) and (24). 
2.2. Case 2. 1 -4cb’ < 0 

where 

1 
2b‘ 

6: = - lnr (ds ine+ cose) 

C 
~ - ~ I n r +  1nB 

1 
b’ b 

p = -  

e2a-2flbd2(d2 + 1) 
8 ~ p =  -- 

4bJ2r2(d sin B + cos 
e 

(34) 

(35) 

I n  this case p and H 2  are both negative and the solution has no physical significance. 

2.3. Case 3. 1-4cb’ = 0 
1 

2b 
cx = [ln Y + ln(ln(ar2) - 2}] 

1 
4bI2 

/3 = - [ln T + 2 ln(ln(ar2) - 2}] + In B 

b e2a-24 
8 v p  = - 

b’2r2{ln(av2) - 2}2’ 

(37) 

(39) 

Again p and H 2  are both negative. 

3. Fitting the solutions to an outside pure magnetic field solution 
The solutions given by Bonnor (1954) and Melvin (1964) have a sourceless magnetic 

field along the z axis. We shall try to introduce a source in the form of a conduction current 
in the 4 direction inside a perfectly conducting dust. Som (1968) has taken a rotating (but 
without net angular momentum) dust distribution with an axial magnetic field and matched 
the solution to that of Bonnor. But the magnetic field is source free in his case too. 

First we note that the solution given by equations (21) and (22) can be matched with the 
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exterior solutions (32) and (33) at Y = y o  if the following boundary conditions are satisfied: 

2hroR-1+(k2/2(h- 1)2}(2-A)Y014, h(X-2) 
(43) - ~ + - YO 

a + bt2yO2 roA+{k2/4(h- l)2}Yo2- Y O  

These four equations may be used to determine the four unknown constants A, K, a and B. 
Secondly we shall consider another solution which can be nicely matched with the 

exterior solution. Since the equations (8)-(10) are underdetermined we may write for the 
interior metric 

tl = In k , + k 2 -  (44) 3 
where kl and K 2  are constants and a is the radius of the cylinder containing perfectly 
conducting dust. From the field equations we have 

The  exterior metric is given by (32) and (33). Hence we have, from the boundary 
conditions, 

k2 
ha2- A ]  

(2-h)a2-). 1 
4(X - 1 ) 2  

k2 
k, = - haa+ 

2 r 4(h-1)2 (47) 

1 
a2 b = -h(h-2) (48) 

c = gh(h-2)(21na-l)+ 1nB. (49) 

Now we have from equation (14) 

For p to be positive b < 0 and hence from (48) we obtain 0 < h < 2. 
Further, 

+ b ] .  (512 
exp( - ( b y 2  + 2c)) 

H2 = 

This is always positive if 
4klk2/a2 

> -6 .  
(kl + k2I2 

If we substitute the values from equations (46)-(48)) this condition reduces to 

(X-1)2 > 0. 
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We exclude the case h = 1 because the exterior metric becomes singular for this value. 
Further, if the metric is not singular on the x axis then 

c = -2lnk, .  (52) 

( 5 3 )  

From (49) and (51) we have 

In B = *h(h - 2)( 1 - 2 In a)  - 2 In k,. 

Thus all the constants have been determined. 
If, however, h = 0 or 2, b = 0 and hence from (50) p = 0. The  metric everywhere is 

that given by Melvin. 
We shall now show that the Melvin universe cannot be matched with matter dust in 

this way. Let us consider a cylinder of matter of radius U which is matched with the pure 
magnetic field solution on the exterior, For a static metric R: can be expressed in the 
following form: 

(54) 

Further, from the form of our metric we have 

From the field equations we have 

Integrating this over a unit length of the cylinder of radius a, we obtain 

Substituting the values from (32) and (33) we obtain the mass inside the cylinder as 
2 f l  237 

p d - g d r d x d +  = $h(2-X). (57) m = J : s ,  I ,  
m vanishes when h = 0 or 2, so that a non-vanishing p cannot everywhere be positive. 
This proves our proposition. 

4. Concluding remarks 
We have exhibited above a class of solutions where the electromagnetic interaction is 

balanced by the gravitational field. Since the vorticity, shear and expansion are absent we 
may write from the definition of the Ricci tensor 

where 

Further, the divergence relation Tuv;:, = 0 gives from equation (4) 
1 

P 
T u  = - -FUvJ". 

Hence we have, from the field equations, 

( 5 8 )  

(59) 

where J 2  = JvJv.  
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The left-hand side gives the electromagnetic interaction and the effect of gravitation is 
given by the right-hand side. 
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